SPEOS (Stimulation of Endorphin, Oxytocin and Suggestive): Intervention to Improvement of Breastfeeding Production

Indah Lestari¹, Ima Rahmawati¹, Emik Windarti¹, Hariyono²

¹Faculty of Nursing, Institute of Health Science “Bina Sehat PPNI” of Mojokerto, Indonesia; ²Health Department, Mojokerto Regency, Indonesia

ABSTRACT

Background: The problem of preliminary breast milk expenditure that is not yet smooth is often the reason for the mother to delay or replace it with breast milk substitutes. Even though they have obtained early breastfeeding initiation, the expenditure and production of breast milk are not yet smooth.

Objectives: Proving the SPEOS method (Stimulation of Endorphin, Oxytocin, and Suggestive) is effective against increasing breast milk production.

Method: The study used a quasi-experimental pre and posttest design. The sample was 60 postpartum mothers in the Mojokerto area hospital who met the research criteria, taken with a simple random sampling technique. The control group gets early breastfeeding initiation according to the procedure. The intervention group was given the SPEOS method (Stimulation of Endorphin, Oxytocin and Suggestive) intervention method, which was carried out according to the procedure. Assessment of breast milk production is carried out by pumping breast milk, using Pigeon (ml) pumps. Data collection used a weighing test for breast milk production. Processing and analysis of data used paired t-test, Mann Whitney test, and LSD test.

Result: The SPEOS method affected the increase in breast milk production. There were significant differences in the production of breast milk pre-post control group, obtained t-count 8.923 (p = 0.000) and the experimental group t-count 18.886 (p = 0.000). The difference in the level of comfort between groups with the LSD test obtained p-value = 0.035.

Conclusion: The findings of the study show that the SPEOS method (Stimulation of Endorphin, Oxytocin, and Suggestive) is one of the alternative interventions for increasing milk production and accelerating the release of breast milk through increased work of prolactin and oxytocin.

Keywords: SPEOS method, Breast milk production, Postpartum

INTRODUCTION

Indonesia, encouraging exclusive breastfeeding for infants up to 6 months of their first life and continued until the child is two years old. For babies, breast milk has an important role to support growth, health, and survival. Whereas for mothers, breastfeeding can reduce morbidity and mortality because the breastfeeding process will stimulate uterine contractions there by reducing puerperal complications(1). UNICEF asserted that babies are given formula die 25 times higher than babies who are exclusively breastfed(2).

Nationally, mothers who breastfed alone in the first 24 hours were 30.2%. Data shows that the coverage of exclusive breastfeeding in Indonesia is still low, only 54.3% of babies in Indonesia are exclusively breastfed, meaning that there are still 45% of babies in Indonesia who are not getting enough breast milk(3). While the national target for exclusive breastfeeding is 80%, in Southeast Asia the achievement of exclusive breast milk shows numbers that are not much different. In

Corresponding Author:
Indah Lestari
Faculty of Nursing,
Institute of Health Science
“Bina Sehat PPNI” of Mojokerto, Indonesia
Email: ns.indah@yahoo.com
comparison, exclusive breastfeeding coverage in India has reached 46%, in the Philippines 34%, in Vietnam 27%, and Myanmar 24%\(^{(4)}\).

Research in Ghana shows that 16% of infant deaths can be prevented through breastfeeding babies from the first day of birth. This figure rose to 22% if breastfeeding began in the first hour after birth\(^{(5)}\).

Failure in the breastfeeding process is often caused by the emergence of several factors, including maternal factors, infant factors, psychological factors, health personnel factors, socio-cultural factors. The research conducted by Diana (2001) showed that inhibiting factors of exclusive breastfeeding in the form of false beliefs about baby food, promotion of formula milk, and health problems for mothers and babies led to the failure of exclusive breastfeeding\(^{(6)}\).

The reality in the field, the production, and ejection of breast milk which is a little on the first day after birth, becomes an obstacle in early breastfeeding. The problem of breastfeeding is affected by the reduction of stimulation of the hormone oxytocin, the physical and psychological changes in the mother during the lactation process. Theoretically, the workings of the oxytocin hormone are influenced by psychological conditions. Therefore maternal postpartum preparation is an important factor that can influence the success of breastfeeding, stress, excessive worry, unhappiness plays a role in breastfeeding success\(^{(7)}\).

The problem of breastfeeding does not come out on the first day of birth must be anticipated since pregnancy through lactation counseling, but the dissemination of information among officers has not been optimized, so it is necessary to do alternative ways to stimulate milk production\(^{(8)}\). Various researches that have been carried out in Indonesia to facilitate breast milk production include methods of Oxytocin Massage, Marble Technique, Warm Compress, Massage Rolling (back), Breast Care, but due to limited information on health services about the procedure of implementation, these methods are only known and rarely given by health workers as care giver to patients\(^{(9)}\).

The SPEOS method (Stimulation of Endorphin, Oxytocin, and Suggestive) is one of the preferred interventions to stimulate the release of oxytocin through oxytocin and endorphin massage, provide comfort and foster confidence in the mother that breast milk must come out and mothers can breastfeed exclusively\(^{(10)}\).

Endorphins are known as substances that have many benefits. Endorphin massage can stimulate the release of endorphin hormones and can stimulate the appearance of prolactin and oxytocin reflexes to increase the volume and production of breast milk\(^{(11)}\). When combined with oxytocin massage and supported suggestively so that the mother has confidence in her ability in the process of breastfeeding, the resistance to the release of oxytocin will increase. This has an impact on increasing milk production in the early life of the baby.

MATERIALS AND METHOD

The research design was quasi-experiment with pre and post-test design, measurements were taken before and after intervening in the SPEOS method which was a combination of endorphin massage, oxytocin massage, and suggestion, starting 1-6 hours postpartum every day up to week 4. Deep population of this research is all postpartum mothers in the Mojokerto area hospital. Samples were primiparous postpartum mothers giving birth to 60 people (divided into 30 experimental groups and 30 control groups). Research criteria: samples aged 20-35 years, postpartum first day (1-6 hours postpartum), primiparous and multiparous, it did not experience postpartum complications, gestational age above 37 weeks, infants were not given formula milk, BB ≥2500 gram, mother, did not smoke, form of nipples on both mother’s breasts stood out, condition of mother and baby healthy. Taken with a simple random sampling technique.

The SPEOS method is given every day starting on day 1 (1-6 hours post partum) for four weeks. The duration of the massage starts 10 minutes at week 1, then increases to 15 minutes week II. Then evaluating if the milk production is small then the time that the massage is increased to 20 minutes and maintained until week IV, breast milk production assessment is carried out by pumping breast milk, using a Pigeon pump (ml), breast milk is pumped before and after massage every week up to 4 weeks, pumped 2 hours before the breastfeeding baby. Data collection uses a weighing test for breast milk production. Processing and analyzing data using a paired t-test for breast milk secretion, Mann Whitney test to measure the mean difference of breast milk secretion, while to see the difference in comfort level between groups of respondents with the LSD test.
FINDINGS

Table 1: Distribution of Age, Parity, Education, BMI and Baby Weight

<table>
<thead>
<tr>
<th>No.</th>
<th>Variable</th>
<th>Control</th>
<th></th>
<th>Experiment</th>
<th></th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Frequency</td>
<td>Percentage</td>
<td>Frequency</td>
<td>Percentage</td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>Age</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>< 20 years</td>
<td>5</td>
<td>17%</td>
<td>2</td>
<td>6%</td>
<td>0.241</td>
</tr>
<tr>
<td></td>
<td>20-30 years</td>
<td>16</td>
<td>53%</td>
<td>18</td>
<td>60%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>> 30 years</td>
<td>9</td>
<td>30%</td>
<td>10</td>
<td>34%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>30</td>
<td>100%</td>
<td>30</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Parity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.356</td>
</tr>
<tr>
<td></td>
<td>Primigravida</td>
<td>11</td>
<td>37%</td>
<td>8</td>
<td>27%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Multigravida</td>
<td>16</td>
<td>53%</td>
<td>19</td>
<td>63%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Grande multi</td>
<td>3</td>
<td>10%</td>
<td>3</td>
<td>10%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>30</td>
<td>100%</td>
<td>30</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Education</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.489</td>
</tr>
<tr>
<td></td>
<td>Elementary school</td>
<td>5</td>
<td>17%</td>
<td>4</td>
<td>13%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Middle school</td>
<td>10</td>
<td>34%</td>
<td>12</td>
<td>40%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>High school</td>
<td>9</td>
<td>30%</td>
<td>10</td>
<td>34%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>College</td>
<td>6</td>
<td>19%</td>
<td>4</td>
<td>13%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>30</td>
<td>100%</td>
<td>30</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>BMI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.653</td>
</tr>
<tr>
<td></td>
<td>Thin skinny level</td>
<td>8</td>
<td>27%</td>
<td>8</td>
<td>27%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thin weight</td>
<td>0</td>
<td>0%</td>
<td>0</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Normal</td>
<td>16</td>
<td>53%</td>
<td>20</td>
<td>66%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Light weight level</td>
<td>6</td>
<td>20%</td>
<td>2</td>
<td>7%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fat weight level</td>
<td>0</td>
<td>0%</td>
<td>0</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>30</td>
<td>100%</td>
<td>30</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Baby weight</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.356</td>
</tr>
<tr>
<td></td>
<td>2500-3000</td>
<td>11</td>
<td>37%</td>
<td>8</td>
<td>27%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3001-3500</td>
<td>16</td>
<td>53%</td>
<td>19</td>
<td>63%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3501-4000</td>
<td>3</td>
<td>10%</td>
<td>3</td>
<td>10%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>30</td>
<td>100%</td>
<td>30</td>
<td>100%</td>
<td></td>
</tr>
</tbody>
</table>

All variables showed p-value >0.05, which indicated that there was no significant difference of the characteristics of the respondents between the experiment and control group. It could be said that both group were homogeneous.

Table 2: Breast milk secretion in the experiment and control group

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>SD</th>
<th>t-count</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control Group</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-test</td>
<td>17.49</td>
<td>5.063</td>
<td>8.923</td>
<td>0.000</td>
</tr>
<tr>
<td>Post-test</td>
<td>73.00</td>
<td>29.047</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Experiment Group</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-test</td>
<td>17.49</td>
<td>5.063</td>
<td>18.886</td>
<td>0.000</td>
</tr>
<tr>
<td>Post-test</td>
<td>221.29</td>
<td>55.738</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The table shows that there are differences in the results of pre-post in the control and experimental groups, as evidenced by the results of the t-count of the control group = 8.923 and the experimental group = 18.886. This shows that SPEOS, increase milk production.

Table 3: Mean difference of breast milk secretion in the experiment and control group

<table>
<thead>
<tr>
<th>Variable</th>
<th>Control</th>
<th>Experiment</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Difference of breast milk secretion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>55.51</td>
<td>203.80</td>
<td>0.0001</td>
</tr>
<tr>
<td>SD</td>
<td>29.98</td>
<td>51.689</td>
<td></td>
</tr>
</tbody>
</table>

The difference in mean values, shows that the SPEOS intervention in the experimental group increased breast milk production, with p-value = 0.0001

Table 4: Differences in the level of comfort between groups

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>SD</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control group</td>
<td>0.56</td>
<td>9.86</td>
<td></td>
</tr>
<tr>
<td>Experiment group</td>
<td>13</td>
<td>11.55</td>
<td></td>
</tr>
</tbody>
</table>

The difference in mean values, shows that the SPEOS intervention in the experimental group increased level of comfort, with p-value = 0.035.

Table 5: Indicators of breast milk production in the control and experimental group

<table>
<thead>
<tr>
<th>Indicators</th>
<th>Control group</th>
<th>Experimental group</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Tense breast</td>
<td>45 %</td>
<td>14</td>
</tr>
<tr>
<td>Mother relaxes</td>
<td>55 %</td>
<td>16</td>
</tr>
<tr>
<td>Let down good reflexes</td>
<td>55 %</td>
<td>16</td>
</tr>
<tr>
<td>The frequency of breastfeeding is> 8 times</td>
<td>100 %</td>
<td>30</td>
</tr>
<tr>
<td>Use 2 breast</td>
<td>40 %</td>
<td>12</td>
</tr>
<tr>
<td>Correct attachment position</td>
<td>25 %</td>
<td>8</td>
</tr>
<tr>
<td>Putting is not blisters</td>
<td>65 %</td>
<td>20</td>
</tr>
<tr>
<td>Looks full red breasts</td>
<td>20 %</td>
<td>6</td>
</tr>
<tr>
<td>Breastfeeding without schedule</td>
<td>45 %</td>
<td>14</td>
</tr>
<tr>
<td>Babies suck strongly with a slow beat</td>
<td>55 %</td>
<td>16</td>
</tr>
</tbody>
</table>

Increased production of breast milk, indicated by tense breasts, Mother relaxes, Let down good reflexes, Use 2 breasts, Correct attachment position, Putting is not blisters, Looks full red breasts, Breastfeeding without schedule, Babies suck strongly with a slow beat. While the frequency of breastfeeding is> 8 times, experienced by all control groups. This shows that the quantity of breast milk production is insufficient, so the baby must breastfeed more often than the experimental group.

DISCUSSION

The theory of neurotransmitters that produce endorphins is by affecting the area of the brain, stimulating the secretion of \(\beta \)-endorphin and enkephalin in the brain and spinal cord. Neurotransmitter release affects the immune system and antinociceptive system\(^{12} \). Endorphins are naturally produced by the body’s pituitary gland which is useful for reducing pain, affecting memory and mood which then gives a relaxed feeling\(^{10} \).

While oxytocin massage is a massage along the spine (vertebrae) to the fifth-sixthcostae bone and is an attempt to stimulate the hormone prolactin and oxytocin after childbirth. This massage serves to increase the feeling of comfort and relaxation that can stimulate the release of endorphins, with smooth blood flow to the brain, the hypothalamus quickly receives a signal, forwarded to the posterior pituitary that secretes oxytocin, so that the milk automatically comes out\(^{13} \).

Relaxing muscles, vasodilation of blood vessels, stimulates long fibers and opium receptors such as \(\beta \)-endorphin, which contains large peptides that can be released slowly. Furthermore, the opium on the dorsal
spinal cord blocks the pain signal, closes the substantial
galatinosa so that the pain signals are pressed\(^{14}\).

By the theory that prolactin produced during the
breastfeeding process has been studied has a relaxation
effect which causes breastfeeding mothers to feel calm
and even have a euphoric effect, so that the higher the
prolactin level, the better the production of breast milk\(^{2}\).

The massage will eliminate tension and can cause
relaxation of body muscles. This will give a sense of
safe and comfort which means psychologically giving a
positive impact on the feeling of calm, comfort, relaxation
and decreased stress; this stimulates an increase in body
morphine, namely endorphins\(^{6}\). A comfortable, calm
and relaxed atmosphere will bring positive emotions that
can increase the secretion of neurotransmitter endorphin
through POMC which serves as a pain reliever and
excessive control of Corticotropin-releasing hormone
(CRH) secretion\(^{15}\). This positive response through the
HPA pathway will stimulate the hypothalamus to reduce
CRF secretion followed by a decrease in corticotropin,
adrenocorticotropic hormone (ACTH), and the adrenal
medulla will respond by decreasing catecholamine
secretion, then peripheral resistance and cardiac output
will decrease, so that blood pressure decreases. The state of
relaxation that is felt by the mother will improve maternal
comfort so that it increases the letdown reflex and increases
the amount of the hormone prolactin and oxytocin\(^{15}\).

Endorphin and oxytocin massage are actions that
function to stimulate the production of the prolactin
hormone from the brain. This hormone which affects a
lot of breast milk. The main massage points to facilitate
breast milk, according to Daris, are in the breast itself.
The three main points for a massage on the breast are one
point above the nipple, right on the nipple, and the point
under the nipple. If this is done routinely and correctly,
this effort can facilitate breast milk production. In
addition to the dots in the breast, the point below the knee
(point ST 36) will also help facilitate breastfeeding\(^{16}\).

Mother’s belief in being able to breastfeed her baby
is a factor that supports the success of breastfeeding.
What the body experiences depend on its subconscious
mind. The unconscious soul plays 82% of the function of
the self, while the conscious soul plays 18. When
the recording is negative, it can be neutralized to be
reprogramming with positive suggestions. Suggestions
made by relaxing the mind will cause feelings of
relaxation and happiness so that breast milk will come
out smoothly\(^{17}\).

The most important period of breastfeeding babies
is the first 30 minutes of birth for up to 3 days because
at that time colostrum was first produced. This means
that it shows signs that breastfeeding in the first hour
decreases mortality, and breast milk is exclusively six
months old, will reduce infant mortality\(^{6}\).

CONCLUSION

In postpartum mothers, the SPEOS method can
be used as an intervention option for increasing breast
milk production. In addition to increasing production,
SPEOS has advantages that can be done from an early,
has a good impact on the acceleration time of release
breast milk and provides confidence and comfort for
postpartum mothers.

Ethical Clearance: Yes

Conflict of Interest: No

Source of Funding: Authors

REFERENCES

