Detection for Virulence Factors of Amoebic Dysentery in Bloody Diarrheal Children Under 7 Years

Ghada B. Ali Alomashi¹, Zainab S. Abdallah²

¹Assist. Prof.of Medical Microbiology, College of Medicine, University of Al-Qadisiyah, Diwaniya, Iraq,
²Researcher/Department of medical microbiology, Collage of Medicine, University of Al-Qadisiyah, Diwaniya, Iraq

Abstract

Background: Amoebiasis, or amoebic dysentery, is a term used to describe an infection caused by the protozoan Entamoebahistolytica.

Aim: Identify E.histolytica virulence factors (amoabapore and cysteine proteinase) that play a critical role in pathogenesis of amoebic dysentery by using PCR results.

Method: Detect the major virulence factors of the intestinal parasite E.histolytica on Stool samples were collected from 56 samples by using PCR technique and. The DNA sequencing analysis was performed for confirmative genetic identification of some local Entamoebahistolytica.

Result: To detect the major virulence factors (V.F.) (cysteine proteinase and amoebapore) of E.histolytica, PCR technique was conducted, by using specific primers for E.histolytica, a 56 samples were positive to E.histolytica using PCR technique was diagnosed previously, the result showed that 54 stool samples were bloody & positive to virulence factor cysteine proteinase, and 37 stool samples were bloody & 53 samples were positive to virulence factor Amoeba pore.

Conclusion: Cysteine proteinase and Amoebaporesis the most important virulence factors in E.histolytica that play a critical role in the mediated intestinal cell lysis.

Keywords: Bloody diarrheal; Child; amoebic dysentery; Health.

Introduction

E.histolytica is protozoan parasite that causes amoebic dysentery in humans. the infection leads to severe diarrheal disease may be causes colitis in children. Worldwide, amebiasis remains a significant cause of morbidity and mortality in Iraq¹.

According to World Health Organization found theamebiasis is the second or third most frequent parasitic disease, exceeded only by malaria and schistosomiasis; and contributing towards the high global burden of diarrhea, notably in regions with low economic development and settings with poor sanitation².³.

The invasive intestinal Amoebiasis remains for several weeks of cramping, abdominal pain, bloody diarrhea and weight loss⁴.

The symptoms of the disease depend on multiple virulence factors among E. histolytica presence of these factors has been linked to be risky for complicated signs⁵.

Materials and Method

56 Stool samples were isolated from bloody diarrheal children & were positive for E. histolytica using PCR previously (from the begining of October 2018 till the
end of January 2019) the samples collected from (Al-
Hamza general hospital, AL-Sedeer hospital and private
clinic) in Al- Diwaniya governorate in Iraq country .
PCR was used to detect two proteins (amoebapore C
and cysteine proteinase) as a major virulence factors
of *E.histolytica* and The DNA sequencing analysis was
performed for confirmative genetic identification of some
local Entamoebahistolytica isolate No.1 - No.6 based on
small subunit ribosomal RNA gene and identified the

genetic variation between Entamoebahistolytica isolates
and NCBI-Genbank Entamoebahistolytica isolates.

Molecular Method: The molecular method
conventional PCR was also used in the present study
to detection the DNA of *Entamoebahistolytica* in stool
samples . The Positive result of conventional PCR was
56 sample as shown in Figure (1).

The prevalence rate of virulence factors Amoeba
pore and Cystein proteinase among children with
diarrhea results shows Amoeba pore was seen in 53
(94.6 %), whereas, Cystein proteinase was seen in 54
(96.4 %) of patients.

In the present study the amplified DNA showed that
the amoebapore C has (928 bp) in 53 samples, Figure (2).

![Figure (1): Agarose gel electrophoresis image that showed PCR product analysis for 18S ribosomal RNA gene in Entamoebahistolytica isolates. M (Marker ladder 1500-100bp). Lane (1-7) some positive samples at 573bp product size.](image)

![Figure (2): Agarose gel electrophoresis image that showed PCR product analysis for Amoebapore C gene in Entamoebahistolytica isolates. M (Marker ladder 1500-100bp). Lane (1-6) some positive samples at 302bp product size.](image)
The results of this estimation revealed that the amplified DNA has (885 bp) for cysteine proteinase in 54 samples, Figure (3).

Figure 3: Agarose gel electrophoresis image that showed PCR product analysis for Cysteine protease gene in Entamoebahistolytica isolates. M (Marker ladder 1500-100bp). Lane (1-7) some positive samples at 434bp product size. Amplification Product 900.

The virulence factor Amoeba pore was also more frequently observed in children with bloody diarrhea than children with non-bloody diarrhea, 69.8 % versus 30.2 %, respectively ($P = 0.001$). This result may be due to that amoebapore produced by *E.histolytica* trophozoite play an important role in formation of intestinal ulcer because it cause tissue lysis and flusk shape ulcer. *E.histolytica* enzyme insert the trophozoite into epithelial cell of large intestine causes host cell membrane more permeability and cell dying. This agrees with Mirelman et al; Bracha et al; Zhang et al, .

The virulence factor Cystein proteinase was also more frequently observed in children with bloody diarrhea than children with non bloody diarrhea, 54(100 %) versus 0 (0%), respectively ($P = 0.001$), as shown in table (1). The role of this virulence factors (cysteine proteinase & Amoeba pore) (which is the most important V.F. secreted by *E. histolytica*) the trophozoite of *E.histolytica* invade the epithelial cell of host cell & lysis of junction between these cell then killed & engulf the debris & erythrocytes, the trophozoite can travel through the portal circulation to the liver & produce liver abscesses by making a breach to the mucosal barrier and this lead to life threatening if not treated.

<table>
<thead>
<tr>
<th>Type of diarrhea</th>
<th>Positive n = 54</th>
<th>Negative n = 2</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bloody, n (%)</td>
<td>54 (100.0 %)</td>
<td>0 (0.0 %)</td>
<td>$<$ 0.001 ¥</td>
</tr>
<tr>
<td>Non bloody, n (%)</td>
<td>0 (0.0 %)</td>
<td>0 (0.0 %)</td>
<td>HS</td>
</tr>
</tbody>
</table>

DNA Sequence results: The DNA sequencing analysis was performed for confirmative genetic identification of some local Entamoebahistolytica isolate No.1 - No.6 based on small subunit ribosomal RNA gene and identified the genetic variation between Entamoebahistolytica isolates and NCBI-Genbank Entamoebahistolytica isolates.

The DNA sequencing analysis results were showed that the local Entamoebahistolytica Human
isolates appeared highly genetic confirmation into NCBI-Genbank Entamoebahistolytica isolates with less genetic variation between Entamoebahistolytica isolates according to phylogenetic tree analysis and NCBI-BLAST Homology Sequence identity (%).

The local Entamoebahistolytica isolate No.1 - No.6 were showed closed related to NCBI-BLAST Entamoebahistolytica isolate (AB845672.1) at total genetic changes (0.01-0.004%)

The NCBI-BLAST Homology Sequence identity (%) between local Entamoebahistolytica Human isolates and NCBI-BLAST submitted Entamoebahistolytica isolates were show (98-99%) as showed in table (2). The genetic identified local Entamoebahistolytica Human isolates (No.1-No.6) were submitted in NCBI-Genbank for accession numbers (MN227232.1-MN227237.1) as showed in table (2).

The local Entamoebahistolytica Human isolates were submitted in Genbank database as (Entamoebahistolytica isolate IQ-D small subunit ribosomal RNA gene, partial sequence) with their nucleotide sequence,

<table>
<thead>
<tr>
<th>Entamoebahistolytica isolate No.</th>
<th>Genbank Accession number</th>
<th>NCBI-BLAST Homology Sequence identity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E.histolytica isolate No.1</td>
<td>MN227232.1</td>
<td>Entamoebahistolytica AB845672.1</td>
</tr>
<tr>
<td>E.histolytica isolate No.2</td>
<td>MN227233.1</td>
<td>Entamoebahistolytica AB845672.1</td>
</tr>
<tr>
<td>E.histolytica isolate No.3</td>
<td>MN227234.1</td>
<td>Entamoebahistolytica AB845672.1</td>
</tr>
<tr>
<td>E.histolytica isolate No.4</td>
<td>MN227235.1</td>
<td>Entamoebahistolytica AB845672.1</td>
</tr>
<tr>
<td>E.histolytica isolate No.5</td>
<td>MN2272361</td>
<td>Entamoebahistolytica AB845672.1</td>
</tr>
<tr>
<td>E.histolytica isolate No.6</td>
<td>MN227237.1</td>
<td>Entamoebahistolytica AB845672.1</td>
</tr>
</tbody>
</table>

Table (4) the NCBI-BLAST Homology Sequence identity (%) between local Entamoebahistolytica Human isolates and NCBI-BLAST submitted Entamoebahistolytica isolates:

Ethical Clearance: The Research Ethical Committee at scientific research by ethical approval of both MOH and MOHSER in Iraq

Conflict of Interest: Non

Funding: Self-funding

References

